A New Improved Method for Studying Reactions in Inverse Kinematics

John P. Schiffer Argonne Nat'l Laboratory

ઢ

Alan Wuosmaa Western Michigan University

CONSIDERATIONS

- To interpret transfer reactions: (d,p) (3 He,d) (α ,t) ..., sensibly momentum matching is important: (usually 2-5 MeV/u above the Coulomb barrier).
- With inverse kinematics the essential region (where the DWBA approximations are valid and angular distributions make sense) has low-energy particles spread out over a large solid angle.

See some kinematics for d(132 Sn,p)

What is needed?

- Good energy resolution (since energies are compressed), and good particle identification
- dE/dx measurements are difficult and time-of-flight may work best.
- Collecting particles from $\sim 2\pi$ (a hemisphere) onto a relatively small detector.

With a Si ball the detection of lowenergy particles is difficult, particularly in a sea of high-energy ones.

A Magnetic spectrograph would have trouble approaching the 2π solid-angle by ~2 orders of magnitude.

POSSIBLE DEVICE

- A uniform-field, large-bore solenoid that brings particles below a certain momentum to the axis, where a detector is located.
- The length of the detector on the axis determines the fractional momentum bite.
- Angle information (needed to <1°) can be provided from a combination of energy, and position along axis
- The detector itself could be thin, cooled Si which should yield good energy and t.o.f. resolution.
- Segmentation along the axis need not be great - perhaps 20 segments if a factor of two in momentum is covered.

For example, for d(132Sn,p)

Proton energy range 1 - 8 MeV

Corresponding to lab angles of

180°-100°

Solenoid (r=25 cm)

~ 3 T

Detector length

~ 25 cm

Detector segmentation ≤ 1 cm

Time of flight

~ 8-25 ns

Cyclotron Period for Various Particles (B = 2T)

Particle	T _{cyclotron} (ns)
þ	32.8
d, α	65.6
†	98.4
³ He	49.2

$$T_{cyclotron} = \frac{2\pi m}{qB}$$

T_{cyclotron} is <u>independent</u> of <u>energy</u> and <u>angle!</u>

Assume a stationary source in a solenoid.

The particles with energy E will return to the axis at a distance z from the axis:

$$z = \tau v_z$$

$$\tau = \frac{2\pi}{\omega_{cycl}}, v_z = \sqrt{\frac{2E}{m}}\cos(\vartheta)$$

where θ is the angle of emission with respect to the solenoid and E and m are the kinetic energy and mass of the particles.

Advantages of a Solenoid Over a large 2π array

- Energy resolution: better by a factor of 10-20 because of magnetic properties.
- Particle ID: simple and clean with TOF (rather than dE/dx, that needs a second large layer of Si detectors).
- More compact & simpler detector:

 Detector area ≤200 cm², rather than ≥3000 cm²; at least an order of magnitude fewer channels of electronics.

Disadvantage:

Need \$1M:

Superconducting Solenoid: B>2T, L≈1 m, Large bore (>0.5 m), uniform field over volume (< few %), similar to MRI magnets.

